

Испытания полимеров и пластмасс от сырья до готовой продукции

В этой брошюре представлена линейка оборудования — прибор в комплекте с необходимыми аксессуарами и программным обеспечением — для проведения физико-механических испытаний и химического анализа полимерного сырья и готовой продукции в соответствии с конкретными действующими стандартами (ГОСТ, ASTM и т.п.).

Производство разнообразных полимерных материалов и их использование во всех отраслях промышленности требует обеспечения надёжного контроля качества полимерного сырья и готовой продукции. Испытания полимеров и пластмасс проводятся, чтобы оценить возможности и ограничения материалов. Одна из основных задач для разработчиков, производителей и поставщиков полимерной продукции — подбор исходных полимеров и добавок таким образом, чтобы конечный продукт соответствовал требуемым условиям эксплуатации.

Физико-механические испытания

Физические и механические испытания полимеров гарантируют, что материал соответствует требованиям, предъявляемым промышленным сектором.

Механические испытания позволяют оценить следующие характеристики: предел текучести при растяжении, прочность и относительное удлинение при разрыве, предел прочности при сжатии, изгибающее напряжение при разрушении/ при заданной величине прогиба, модуль упругости при растяжении, сжатии и изгибе и т.д.

Методы термического анализа позволяют определять: структурные превращения, механические и теплофизические свойства, происходящие химические реакции.

■ Структурные и оптические свойства полимеров

Наличие различных типов полимеров и вводимых в них добавок диктует необходимость проведения их качественного и количественного анализа, оценки ориентации полимерных звеньев с помощью метода ИК-спектроскопии.

Контроль оптических характеристик полимерных материалов (цвет, мутность, прозрачность и т.д.) спектрофотометрическим методом необходим по причине того, что зачастую они определяют потребительские свойства изделий.

Результаты перечисленных испытаний позволят оптимизировать технологический процесс или устранить возможные проблемы при производстве полимерных материалов.

Испытания полимеров и пластмасс

■ Оценка сырья

Сырье/ Метод	Полиэтилен	Полипропилен	Поливинилхлорид	Полиамиды	Полиэфиры
Структурные и оптические свойства Экспрессный входной контроль, компонентный состав, оценка структуры и характеристик сополимеров	ASTM D2238 ASTM D3124 ASTM D6248 ASTM D5576	FOCT 26996-86 ASTM D3900 ASTM D5576	ASTM D5576 ASTM D2124	ASTM	D5594
Теплофизические свойства Определение удельной теплоемкости, определение коэффициента линейного теплового расширения и температуры стеклования/плавления	ГОСТ Р 56754-2015 (ИСО 11357-4:2005) ГОСТ Р 56722-2015, ГОСТ Р 56721-2015 ГОСТ Р 55134-2012 (ИСО 11357-1:2009) ГОСТ 29127-91 ГОСТ 21553-76 ГОСТ 15173-70 ISO 11358-2:2014 ASTM E1131				
Механические свойства Испытания на растяжение и изгиб	ΓΟCT 11262, ΓΟCT ISO 37-2013, ΓΟCT 270-75, ΓΟCT 4648-71, ISO 527:2012, ISO 37-2013, ISO 34-1:2010, ISO 178:2010 ASTM D638-99 ASTM D790-98				
Реологические свойства Вязкость, текучесть, скорость изменения объема	ГОСТ Р 54552-2011, ГОСТ 11645-73, ISO 11443:2005, ASTM D4440-15, ASTM D1646-2007				

■ Оценка готовой продукции

	Полимерная пленка	Формованные изделия (полимерная тара, материалы поливинилхлоридные)	Волокна, текстиль	Трубы
Структурные, оптические и теплофизические свойства	Послойная идентификация и анализ включений ASTM D5477-11; определение мутности/цветности ASTM D1003-13, ASTM D6290, ASTM E1347, ASTM E308		Идентификация ГОСТ Р 56561-2015	ГОСТ Р 56723-2015 ГОСТ Р 56722-2015 ГОСТ Р 56721-2015 ГОСТ 32618.2-2014
Механические свойства	Прочность при растяжении, относительное удлинение при разрыве ГОСТ 10354-82 ГОСТ 14236-81	Контроль прочности на сжатие ГОСТ 33756-2016 ГОСТ 11529-2016 ГОСТ Р 51760-2011	Прочность на разрыв. Ткани — прочность на раздир ГОСТ ISO 2062-2014 ГОСТ 25716-94 ГОСТ 10213.2-73 ГОСТ 6611.2-73 ГОСТ 6611.2-73 ГОСТ 3813-72 ISO 5079:1995 ISO 5081:1977 ISO 5082:1982 ISO 2062:2009 ISO 6939:1998	Оценка механических свойств: испытание на растяжение, относительное удлинение при разрыве, ГОСТ Р 52779-2007 ГОСТ Р 52134-2003 ГОСТ 18599-2001 ГОСТ Р 51613-2000 ISO 15874-2013 ISO 8085-3:2001

Механические свойства полимеров

Испытания полимеров на разрыв

ΓΟCT 11262-80 ISO 527:2012 ASTM D638-99

▶ Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 5 kN

Захваты: пневматические 5 kN или типа пантограф

Экстензометр: контактный, тип SSG50-10SH

(для определения модуля упругости) или SIE-560A

Программное обеспечение: TRAPEZIUMX

Испытания полимерной пленки на разрыв

ΓΟCT 14236-81

▶ Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 500 N

Захваты: пневматические 1 kN

или тисочного типа

Экстензометр: контактный,

тип DSES-1000

Программное обеспечение: TRAPEZIUMX

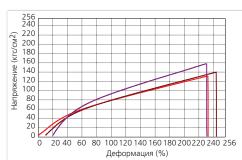


Диаграмма растяжения пленки

Испытания полимеров на изгиб

FOCT 4648-71 ISO 178:2010 ASTM D790-98

Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 1 kN

Оснастка: трёхточечный изгиб

для пластиков

Программное обеспечение: TRAPEZIUMX

Испытания резины на разрыв

ΓΟCT 270-75 ISO 37-2013

▶ Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 1kN

Захваты: пневматические 1kN

или типа пантограф

Экстензометр: контактный,

тип DSES-1000

Программное обеспечение: TRAPEZIUMX

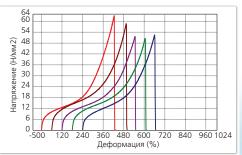


Диаграмма растяжения резины

Испытания текстильных изделий и нитей на разрыв

ΓΟCT 6611.2-73 ΓΟCT 3813-72

Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 5 kN

Захваты: тисочного типа 5kN

и типа «улитки»

Программное обеспечение: TRAPEZIUMX

Испытания тяжелого/особо прочного текстиля

ГОСТ 3813-72

▶ Испытательная машина: AG-X или AGS-X

Нагрузочная ячейка: 50 kN

Захваты: барабанного типа 50 kN

Программное обеспечение: TRAPEZIUMX

Испытание полимерной тары на сжатие

ГОСТ 33756-2016

Испытательная машина: AG-X или AGS-X

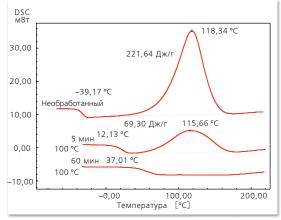
Нагрузочная ячейка: 5 kN

Захваты: компрессионные плиты

(самоустанавливающиеся)

Программное обеспечение: TRAPEZIUMX

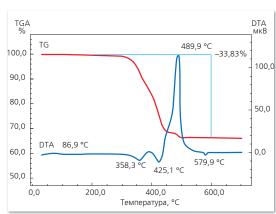
Теплофизические свойства полимеров


Определение температуры и энтальпии плавления и кристаллизации, времени и температуры окислительной индукции

ГОСТ Р 56757-2015 **ΓΟCT P 56756-2015** ГОСТ Р 56755-2015 **ΓΟCT P 56754-2015** ГОСТ Р 56724-2015

Термоанализатор: дифференциальный сканирующий калориметр DSC-60 Plus

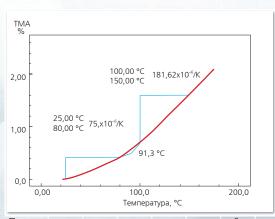

DSC-60 Plus



Исследование процесса отверждения эпоксидных смол

Определение энергии активации, содержание влаги и добавок, воспламеняемость

ГОСТ Р 56722-2015 ГОСТ Р 56721-2015 **ASTM E1131** ISO 11358-1:2014



Количественное определение армирующих материалов в эпоксидных смолах

Определение коэффициента линейного теплового расширения и температуры стеклования, температуры пенетрации

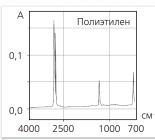
Процесс термического расширения эпоксидной смолы

Структурные и оптические свойства полимеров

Компонентный анализ полимерного сырья

ГОСТ 26996-86 ASTM D5477-11 **ASTM D2238 ASTM D3124 ASTM D6248 ASTM D5576 ASTM D3900 ASTM D2124 ASTM D5594**

ИК-Фурье спектрометр: Приставка НПВО:


IRAffinity-1S

встраиваемая MIRacle-10 с алмазной призмой/

Quest с алмазной призмой

Программное обеспечение: LabSolutionsIR с библиотекой спектров

полимеров и добавок S.T. Japan

ИК-спектр полиэтилена и полипропилена

IRAffinity-1S+MIRacle-10

Идентификация волокон текстильных материалов

ГОСТ Р 56561-2015

ИК-Фурье спектрометр: Приставка НПВО:

IRAffinity-1S встраиваемая MIRacle-10

с алмазной призмой/ Quest с алмазной

призмой

Программное обеспечение: LabSolutionsIR

с библиотекой спектров полимеров и добавок S.T. Japan

Сортировка полимерных отходов

FOCT P 54533-2011

ИК-Фурье спектрометр: Приставка НПВО:

IRAffinity-1S встраиваемая MIRacle-10

с алмазной призмой/ Quest с алмазной

призмой

Программное обеспечение: LabSolutionsIR

с библиотекой

спектров полимеров и добавок S.T. Japan

Определение мутности, коэффициента пропускания прозрачных пластмасс, цветности

ASTM D1003-13 ASTM D6290 ASTM E1347 ASTM E308

Спектрофотометр:

UV-2600/UV-2700

интегрирующая сфера ISR-2600Plus / ISR-2600 Akceccyap:

Программное обеспечение для оценки цветности

Шкала цвета	Трёхцветное разложение			Координаты цветности	
Визуальный цвет	X	Υ	Z	X	Y
Синий	2,88	3,21	5,98	0,2388	0,2661
Зелёный	2,85	3,58	3,02	0,3018	0,3787
Красный	2,42	2,36	2,61	0,3281	0,3192

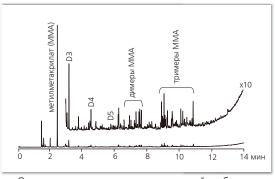
Оценка цветовых характеристик полимеров в соответствии со стандартом СІЕ

UV-2700

Дополнительные испытания

Определение химического состава полимеров и пластмасс

FOCT 33497-2015
FOCT 30351-2001
FOCT P 51695-2000
FOCT 30713-2000
FOCT P 50303-92
FOCT 25737-91
FOCT 28614-90
FOCT 15820-82
ISO 8124-6:2014
ISO 14389:2014
ASTM D7823-14


Газовый хроматомасс-спектрометр: Приставка для проведения пиролиза: Программное обеспечение:

GCMS-QP2020 EGA/PY-3030D GCMSsolution

F-Search (включает библиотеки полимеров и добавок)

GCMS-QP2020 + PY-3030D

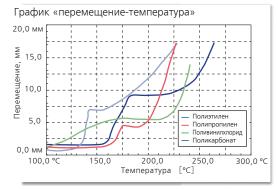
Определение полимерных соединений в образце

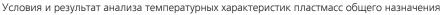
Контроль качества полимерной продукции в соответствии с Директивой RoHS

ASTM F2617-08e1

Энергодисперсионные рентгенофлуоресцентные спектрометры:

EDX-7000P/8000P


Дополнительное программное обеспечение EDXIR-Analysis: оценка загрязнений и компонентный анализ; объединение и анализ результатов измерений, полученных на EDX-7000P/8000P и IRAffinity-1S.



Измерение реологических свойств: определение вязкоупругости, вязкости, определение температуры размягчения и начала текучести

FOCT P 54552-2011 FOCT 11645-73 ISO 11443:2005 ASTM D4440-15 ASTM D1646-2007 Вискозиметр: капиллярный вискозиметр экструзионного типа с постоянной тестовой нагрузкой СFT-EX

Метод	Постоянный нагрев	
Диаметр капилляра	1 мм	
Длина капилляра	1 MM	
Стартовая температура	100 °C	
Конечная температура	300 °C	
Скорость нагрева	5 °С/мин	
Давление	0,98 МПа	
Время преднагрева	300 c	
Навеска пробы	1,2 г	

Названия компаний, наименования товаров/услуг и логотипы, использующиеся в настоящей публикации, являются товарными знаками и фирменными наименованиями корпорации Shimadzu или ее филиалов, использованы ли они или нет с символом торговой марки «ТМ» или «®». Сторонние товарные знаки и товарные наименования могут использоваться в данной публикации для обозначения третьих

Сторонние товарные знаки и товарные наименования могут использоваться в даннои пуоликации для осозначения третьих лиц или их товаров/услуг. Shimadzu не предъявляет права собственности на какие-либо товарные марки и названия, кроме своих собственных.