ОБОРУДОВАНИЕ ДЛЯ КЛИНИЧЕСКИХ ИССЛЕДОВАНИЙ: РЕШЕНИЯ SHIMADZU

pharmtech 26-29 ноября 2012 - Москва, ВВЦ

- **Е.В. Дубинин,** к.б.н.,
- **Л.В. Галактионова,** к.х.н., Компания «Элемент» – генеральный дистрибьютор SHIMADZU

Во всем мире клинические испытания – это неотъемлемая часть разработки любого лекарственного препарата, предшествующая его государственной регистрации и широкому применению.

Для оценки клинических, фармакокинетических и фармакодинамических свойств препаратов проводят определение концентрации лекарственных веществ и продуктов их биохимического превращения (метаболитов) в биологических средах человеческого организма – крови, плазме и пр. Исследования в рамках клинических испытаний лекарственных препаратов должны отвечать самым высоким требованиям по чувствительности, специфичности (селективности) и воспроизводимости измерений.

Японская корпорация SHIMADZU – один из крупнейших мировых производителей аналитического оборудования, уже много лет также является лидером в разработке комплексных решений для клинических исследований. Предлагаемые в данной статье решения позволяют проводить лабораторные клинические исследования в соответствии с международным стандартом GCP (Good Clinical Practice).

ГАЗОВЫЙ ХРОМАТОМАСС-СПЕКТРОМЕТР GCMS-QP2010ULTRA/SE С ТОКСИКОЛОГИЧЕСКОЙ БАЗОЙ ДАННЫХ **«FORENSIC TOXICOLOGICAL DATABASE»**

спользование GCMS-QP2010Ultra/SE с Токсикологической Базой данных позволяет осуществить идентификацию компонентов исследуемой смеси в автоматическом режиме, а также произвести полуколичественный анализ веществ (например, сильнодействующих и наркотических) без использования стандартных образцов. Данный метод обеспечивает скоростной анализ биологических образцов с высокой степенью достоверности полученных результатов.

А. ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ ТОКСИКОЛОГИЧЕСКОЙ БАЗЫ ДАННЫХ SHIMADZU

– конфигурация базы данных:

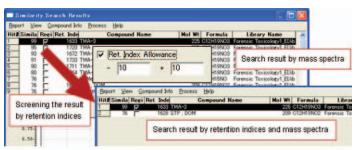
База данных содержит библиотеку масс-спектров, включающую свыше 1000 токсикиологически значимых соединений, таких как психотропные, седативные, наркотические и другие лекарственные средства.

- серийный полуколичественный анализ без использования стандартов:

Анализ проводится на хроматомасс-спектрометре GCMS-QP2010Ultra/SE в режиме Scan – так же, как и при проведении типового анализа неизвестного образца для комплексного определения соединений. Метод Scan позволяет определять целевые компоненты без необходимости сужения диапазона масс. Кроме того, полученные масс-спектры могут быть использованы и для других целей. Продолжительность однократного анализа составляет не более 40 минут.

В итоге сочетание этой базы данных с хроматомассспектрометром Шимадзу GCMS-QP2010 Ultra, который отличается высокоскоростным сканированием, позволяет проводить как серийный анализ неизвестных образцов с идентификацией по имеющейся базе спектров, так и их полуколичественный анализ без использования стандартов.

– простота подготовки к проведению анализа:

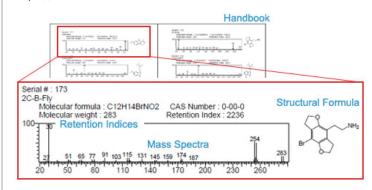

База данных уже содержит методы анализа на хроматомасс-спектрометре GCMS-QP2010 Ultra/SE. Подготовка

к проведению анализа выполняется очень просто: необходимо только загрузить метод в систему. Метод содержит индексы удерживания, а идентификация компонентов производится по точно рассчитанному времени удерживания.

- высокая степень достоверности идентификации:

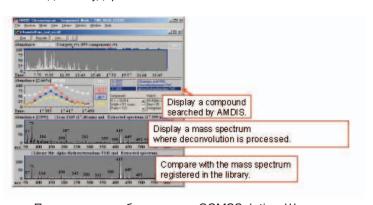
Идентификация с высокой степенью достоверности обеспечивается подтверждением результатов поиска масс-спектров соответствием их индексов удерживания значениям в библиотеке. Индексы удерживания зарегистрированных компонентов содержатся в файле метода, времена удерживания компонентов могут быть определены. Кроме того, зарегистрированы характеристические ионы, что позволяет проводить простое определение компонентов проб непосредственно по масс-хроматограмме.

- библиотека масс-спектров с индексами удерживания:



Даже при определении целевого компонента среди веществ, имеющих сходный масс-спектр, он может быть идентифицирован на основании данных об индексах удерживания, что повышает точность его определения.

Например, ТМС-производные лекарств, содержащих наркотики, имеют сходные масс-спектры и многие соединения могут быть распознаны как кандидаты целевого вещества при поиске по библиотеке масс-спектров. Однако когда соединения подвергаются еще и библиотечному поиску по временам удерживания, определяется единственный целевой компонент.


Информация для каждого компонента (индекс удерживания, ион, масс-спектр и т.д.) задается методом анализа, а время удерживания может быть с легкостью оценено при помощи функции AART1 (автоматическая корректировка времени удерживания) в программе GCMSsolution. Это значительно сокращает время и усилия, затрачиваемые на идентификацию.

Масс-спектр и компоненты, зарегистрированные в библиотеке, собраны в пособии «Handbook». Масс-спектры. индексы удерживания и структурная формула также могут быть проверены при помощи функции поиска введением в строку поиска: имени на английском языке, регистрационного номера, индекса удерживания, молекулярной массы, представленных в пособии «Handbook».

Б. ПРОГРАММА ДЕКОНВОЛЮЦИИ И ДОПОЛНИТЕЛЬНЫЕ возможности ПРОГРАММ ШИМАДЗУ

Библиотека масс-спектров, содержащаяся в базе данных, может быть использована в качестве библиотеки для программы **AMDIS**² (в формате *.msp) от NIST (Национальный Институт Стандартов и Технологии). Программа AMDIS позволяет идентифицировать целевые соединения и определять неизвестные соединения при помощи функции деконволюции масс-спектра. Полученные масс-хроматограммы в методе анализа Токсикологической базы данных можно подвергнуть дополнительной обработке в программе деконволюции в том числе с использованием индексов удерживания.

Программное обеспечение GCMSSolution Шимадзу позволяет производить автоматическую конвертацию полученных масс-хроматограмм в открытый формат записи данных *.cdf. В результате использование данных решений позволяет просто и удобно проводить качественный анализ в программе AMDIS. Кроме того, целевую библиотеку масс-спектров Токсикологической базы данных можно объединить с другими целевыми библиотеками, имеющимися у пользователя или поставляемыми дополнительно (напри-

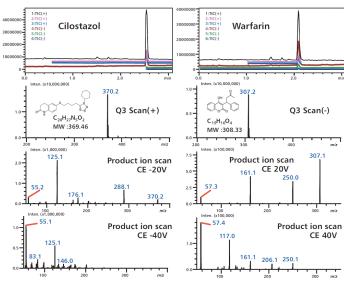
Фармацевтические технологии и упаковка № 6, 2012

Тел./факс редакции «МБ»: (495) 673-56-25, 673-37-03, 790-36-99

мер, MPW2011, Wiley) для проведения качественного анализа с использованием программы деконволюции или без.

С программным обеспечением Шимадзу может быть поставлена специальная программа, позволяющая конвертировать данные библиотек спектров и масс-хроматограмм из формата данных других производителей в формат данных Шимадзу и использовать эти данные при работе на хроматомасс-спектрометре GCMS-QP2010Ultra.

ТАНДЕМНЫЕ КВАДРУПОЛЬНЫЕ МАСС-СПЕКТРОМЕТРЫ LCMS-8030, 8040, 8080


Особая сложность проведения количественного анализа биологических сред состоит в том, что они могут содержать сотни различных компонентов в широком интервале концентраций. Разработанный корпорацией Shimadzu тандемные квадрупольные масс-спектрометры LCMS-8030, 8040, 8080 позволяют эффективно реализовывать методику точного количественного анализа следовых количеств определяемого компонента в сложных матрицах.

LCMS-8030 LCMS-8040 LCMS-8080

СТРУКТУРНЫЙ АНАЛИЗ 26 ФАРМАЦЕВТИЧЕСКИХ СОЕДИНЕНИЙ ПРИ ПОМОЩИ СИНХРОННОГО ОБЗОРНОГО **СКАНИРОВАНИЯ (SYNCHRONIZED SURVEY SCAN)**

26 фарм. препаратов были проанализированы методом Синхронного Обзорного Сканирования (SSS). В этом режиме полное сканирование быстро сменяется сканированием дочерних ионов. Короткое время смены полярности детектируемых ионов (15 м/сек.) и высокая скорость сканирования (15000 АЕМ/с) позволяют анализировать неизвестные соединения в режиме мониторинга реакций распада (MRM) даже в узких хроматографических пиках.

Результаты сканирований Силостазола и Варфарина

Такое сочетание дает возможность комбинировать результаты сканирования нефрагментированных ионов (конфирмационный анализ в Q3) и их фрагментов в одном пике. На рисунке отражены результаты сканирований Си-

Расчет времени удерживания проводится однократно с использованием стандартов н-алканов, которые поставляются в комплекте с Токсикологической базой данных.

² Автоматическая Система Масс - Спектральной Деконволюции и Идентификации

Обрудование для контроля качества ЛС

лостазола и Варфарина. В соответствии с результатами (Табл. 1) каждое из анализируемых соединений было обнаружено при детектировании либо положительных, либо отрицательных ионов, либо в обоих режимах, подтверждая эффективность применения хроматомасс-спектрометра LCMS-8030 для скрининга препаратов, а также в конфирмационном анализе продуктов синтетических реакций.

Таблица 1 Определение 26 препаратов с помощью

Nº	Соединение	Молек. масса	Режим определения ионов	
			Положитель- ных	Отрица- тельных
1	Atenolol	266.16	Да	Нет
2	Procaine	236.15	Да	Нет
3	Lidocaine	234.17	Да	Нет
4	Atropine	289.17	Да	Нет
5	Yohimbine	354.19	Да	Да
6	Chlorpheniramine	274.12	Да	Нет
7	Propranolol	259.16	Да	Нет
8	Alprenolol	249.17	Да	Нет
9	Tetracaine	264.18	Да	Нет
10	Diphenhydramine	255.16	Да	Нет
11	Doxepin	279.16	Да	Нет
12	Desipramine	266.18	Да	Нет
13	Imipramine	280.19	Да	Нет
14	Nortriptyline	263.17	Да	Нет
15	Amitriptyline	277.18	Да	Нет
16	Verapamil	454.28	Да	Нет
17	Carbamazepine	236.09	Да	Нет
18	Isopropylantipyrine	230.14	Да	Нет
19	Alprazolam	308.08	Да	Нет
20	Triazolam	342.04	Да	Нет
21	Cilostazol	369.22	Да	Да
22	Nifedipine	346.12	Да	Да
23	Diazepam	284.07	Да	Нет
24	Warfarin	308.10	Да	Да
25	Chloramphenicol	322.01	Нет	Да
26	Nitrendipine	360.13	Нет	Да

«PROMINENCE TOX.I.S.» – СИСТЕМА ДЛЯ АНАЛИЗА БИОЛОГИЧЕСКИХ ОБРАЗЦОВ С ОН-ЛАЙН ПРОБОПОДГОТОВКОЙ

Данная система может служить «бюджетной» альтернативой спектрометру. Системный токсикологический анализ, основанный на ГХ, ВЭЖХ и иммунологических методах, обычно проводится на образцах плазмы/сыворотки или мочи.

Научным подразделением корпорации Shimadzu разработан и валидирован автоматизированный метод (ТОХ.І.S.) для качественного выявления основных соединений в моче. Для этой цели была выбрана система ВЭЖХ **LC-20 Prominence** с диодноматричным детектором (ДМД) для возможности обращения к коммерческой библиотеке, содержащей свыше 2600 УФспектров токсикологически значимых веществ и метаболитов³.

³ F. Pragst et al., UV spectra of toxic compounds. Dr. Dieter Helm, Heppenheim, 2001.

Критерием идентификации пика в анализируемом образце является совпадение его спектра поглощения на 99.9% с библиотечным с подтверждением по времени удерживания, которое должно отличаться от библиотечного значения не более чем на 5%.

Для валидации системы используется контрольный образец (performance control sample, PCS), содержащий шесть аналитов различных химических классов: 3,4-метилендиоксиамфетамин (MDA) - (1), скополамин (SCP) - (2), морфин (morphine) - (3), кодеин (codeine) - (4), 2-этилидин-1,5диметил-3,3-дифенилпирролидин (EDDP) - (5) и внутренний стандарт – неостигмина бромид (IS) – (6).

Условия ведения анализа позволяют полностью разделить все матричные пики.

Применимость разработанного метода была подтверждена при анализе реальных образцов.

Данные валидации удовлетворяют критериям международных требований к биоаналитическим методам⁴. Система ТОХ.І.S. сочетает преимущества оборудования для ВЭЖХ, быстроту выполнения и невысокую стоимость единичного анализа.

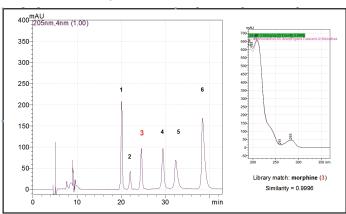


Fig. 2: Performance control test (1=MDA, 2=SCP, 3=morphine, 4=codeine, 5=EDDP, 6=IS)

Система прошла испытания и успешно используется для проведения токсикологических анализов в Берлинской центральной медико-санитарной части, Институте клинической токсикологии (Berliner Betrieb fur Zentrale Gesundheitliche Aufgaben (BBGes), Institute of Clinical Toxicology – Clinical Toxicology and Poison Control Center) и на кафедре клинической фармации Института Фармакологии Свободного университета Берлина (Department of Clinical Pharmacy, Institute of Pharmacy, Freie Universitet Berlin).

> За более подробной информацией о возможностях и работе оборудования можно обращаться в компанию «Элемент», на стенде F 179 (ВВЦ).

115035 г. Москва, Садовническая наб., 69 т/ф (495) 514-00-48 e-mail:msc@element.utk.ru 620075 г. Екатеринбург, ул. Бажова, 68 T/Φ (343) 278-34-64 (-65,-66,-67,-68,-69) e-mail: element@usp.ru

630007 г. Новосибирск, ул. Октябрьская, 42, оф.225/3 т/ф (383) 20-20-726 e-mail:shim_ns@element.utk.ru

№10 (223) 2012

⁴U.S. Food and Drug Administration (FDA), http://www.fda.gov/cder/guidance/4252fnl.pdf

Компания

Решения для проведения научноисследовательских работ на различных этапах разработки и создания лекарственных средств

в том числе:

- системы культивирования клеток и ферментации
- системы автоматической экстракции нуклеиновых кислот
- газовые и жидкостные масс-спектрометры и хроматографы
- УФ-Вид спектрофотометры
- ИК-Фурье спектрометры
- гранулометрические анализаторы
- аналитические и платформенные весы, гравиметрические влагомеры
- анализаторы общего углерода и азота
- генераторы азота, водорода и чистых газов

а также для:

- контроля качества сырья и растворителей
- мониторинга технологических процессов
- контроля качества фармацевтических субстанций и готовой продукции
- контроля качества воды
- контроля чистоты поверхности технологической аппаратуры
- контроля качества упаковки фармацевтических препаратов
- проверки подлинности готовых форм

генеральный дистрибьютор

115035 Москва, Садовническая наб.,69 тел/факс (495) 514-00-48 e-mail: msc@element.utk.ru

620075 Екатеринбург, ул. Бажова, 68 тел/факс (343) 278-34-64 e-mail: element@usp.ru

630007 Новосибирск, ул.Октябрьская, 42, оф. 225/3 тел/факс (383) 20-20-726 e-mail: shim ns@element.utk.ru

